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Equalization equations in reactant resolution 
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Abstract. The chemical system can be analyzed in different resolutions. The assumed resolution imposes a 
given partitioning of the system in physical or functional space. The most frequently explored are global, 
reactant, atoms-in-molecule, orbital, and local resolutions. In this paper we have considered reactant 
resolution, i.e., the mutually polarized reactants before the charge-transfer among them. We have demon-
strated that a certain type of generalized sensitivity, the system responses to the population variables, is 
equalized throughout the space up to the infinite order in the perturbation expansion. 
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1. Introduction 

Density functional theory (DFT)1 has had enormous 
impact on modern chemistry. Even though the direct 
computational approaches2 have rather historical 
significance and cannot describe the chemical phe-
nomena, the indirect Kohn–Sham (KS)3 formulation 
has become a dominant approach nowadays to elec-
tronic structure calculations. It is reflected in the 
growing number of publications that apply the KS 
method to describe the chemical reactions, espe-
cially when transition metals are involved. This un-
doubted success of DFT methods is connected with 
the electron correlation that is included in computa-
tionally not demanding way. Therefore, the scaling 
properties of KS type methods are much better than 
the post-Hartree–Fock methods and almost identical 
to (or even better than) non-correlated Hartree-Fock 
method. 
 Apart from the computational convenience, DFT 
was quickly recognized as a useful tool giving theo-
retical explanation to many intuitive chemical concepts 
and rules.4–7 Among them is the electronegativity, 
identified as the negative electron chemical poten-
tial.8,9 The electron chemical potential is a Lagrange 
multiplier for the electron density, ρ(r), normaliza-
tion in the stationary principle of DFT, 

 ,0)}d)((][{ =−∫− NEv rrρµρδ  (1) 

and is by definition equalized throughout the space 

 ,|])([
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thus validating Sanderson’s electronegativity equali-
zation principle.5 The functional derivative of the 
system energy Ev with respect to the electron density 
ρ(r) (2) is evaluated for equilibrium density, ρeq. 
The only constraint is imposed on the external potential 
v(r), i.e., the nuclei are in the fixed positions. The 
other, commonly discussed quantities are the chemi-
cal hardness and softness, especially in the frame-
work of hard-soft-acids-and-bases (HSAB) principle.6,7 
The former is the second-order derivative of the sys-
tem energy with respect to the electron population 
variable (N), while the latter is the inverse of the 
hardness.8,10 
 The quantities appearing in the second-order Taylor 
expansion of the system energy in global E = E(N, v) 
or local E = E(ρ, v) representation are often consid-
ered as a starting point for deriving different reactiv-
ity descriptors, e.g., the Fukui function (FF),8,11–14 
regional analogous of HSAB principle,15 electro-
philicity16 and philicity17 indices. Especially interest-
ing is the local hardness which like to the chemical 
potential can be equalized throughout the space.18 
However, due to ambiguity in its definition leading 
to the position dependence is often considered as 
convenient reactivity indicator. For more informa-
tion the reader is referred to recent monograph of 
Geerlings and co-workers.13 Nevertheless, the high-
order system responses to population or external poten-
tial perturbation are less explored. The hardness 
population derivative was discussed by Parr and 
Fuentealba.19 Nonlinear FFs and hardnesses up to 
arbitrary perturbation order, were analyzed by Senet.20 



Jacek Korchowiec 

 

492

The works on higher order derivatives of nuclear FF 
should also be mentioned.21,22 
 In this paper we concentrate on high-order population 
derivatives of the system energy in reactant resolution 
(mutually polarized reactants before charge-transfer), 
namely on the corresponding equalization equations. 
First, the global equilibrium is briefly sketched out. 
Then, the inter-reactant equilibrium is considered. The 
equalization equations in global, as well as in reac-
tant resolutions are proved using the induction prin-
ciple. Finally, the conclusions are given. 

2. Global equilibrium 

Even though the chemical potential in the case of global 
equilibrium is equalized by definition (see (1)), we 
repeat here the proof, for the current needs, using 
the following chain rule transformation: 
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Note that in the above equation we compute the 
chemical potential in local resolution but the deriva-
tive is evaluated for equilibrium density (not exactly 
specified in the equation). The local resolution cor-
responds to the totally constrained (frozen) electron 
density with all infinitesimal volume elements being 
mutually closed. Therefore, the perturbation at r dif-
ferentiates the chemical potential from point to point 
(µ(r) ≠ µ(r′) ≠ µ(r″) ≠ . . .) and the global equilib-
rium can be restored by removing the constraints. 
The change of variables in (3) (∂/∂N)(δN/δρ)) indi-
cates such a removal of constraints. In other words, 
the functional derivative is evaluated for equilibrium 
electron density (ρeq.). In the same fashion, one can 
prove that the second-order derivatives of the sys-
tem energy with respect to population variables 
(hardnesses) are equalized,12,18 
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One can eventually use its second definition (see (4)) 
to prove the equalization principle: 

∫∫ ′′′≡′
∂

′∂
′=

∂
∂= rrrrrr

r
rrr d)(),(d

)(
)(
)()(

)( f
NN

ηρ
δρ
δµµη , 

 

( , ) ( , )d d ( )d ,η η σ η δ η′ ′ ′′ ′ ′′ ′′ ′′= = − =∫ ∫ ∫r r r r r r r r r  

 (5) 
 
where η(r, r′) is a hardness kernel, f(r) is the Fukui 
function or the normalized local softness (f(r) ≡ 
s(r)/S).8 Local softness can be obtained by integrat-
ing softness kernel: s(r) = ∫σ(r, r′)dr′, which is the 
inverse of the hardness kernel. The global softness is 
the inverse of the global hardness (S = 1/η).8 The 
proof that ∫η(r, r′)f(r′)dr′ was also given by Senet20 
without referring to the reciprocal kernel. Using the 
chain rule transformation one can write the global 
hardness as η = ∫ f(r)η(r, r′) f(r′)drdr′, therefore in 
the literature one can find some other definitions of 
the local hardness ∫η(r, r′)g(r′)dr′,8,23 where g(r′) is 
a unity normalized function. Notice, that the alterna-
tive definitions lead to the local hardnesses that are 
not equalized throughout the space and can be con-
sidered as a reactivity indicators. Of course, its av-
eraging by the Fukui function leads to the same 
value of the global hardness. There is no such an 
ambiguity for the chemical potential that is always 
equalized for equilibrium electron density. 
 In order to prove the equalization equations up to 
the infinite order, let us introduce the generalized 
global n-potential 
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and its “local” equivalent 
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As previously, the functional derivatives are evaluated 
for equilibrium density. Of course, n = 1 (n = 2) cor-
responds to chemical potential (hardness) and µ(0) ≡ E. 
We further assume that n-potential fulfills the 
equalization equation, 
 
  µ(n) = µ(n)(r). (8) 
 
Thus, we have to prove that the above equation is 
valid for (n + 1)-potential. The proof is straightfor-
ward if we start from definition of (n + 1)-potential 
in “local” representation: 
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In the above derivation we have used Maxwell rela-
tion, definition of global n-potential and the assump-
tion given in (8). 

3. Constraint equilibrium 

In this section we consider the constraint equilib-
rium case. Now, the whole reactive system M is di-
vided into two mutually closed reactants, let say A 
and B.12 Here, we assume that the total density is the 
sum of reactant densities: ρ(r) = ρA(r) + ρB(r). Such 
partitioning is a common practice in energy decom-
position schemes24–27 when one is interested in com-
puting a given energy term and in linear scaling 
methods.28–31 We further assume that both reactants 
are closed to each other, but however, are open to 
their own electron reservoirs. Such a situation can 
be schematically represented as follows, 

 M = (RA M A|B M RB). (10) 

Here, RA and RB are the reactant electron reservoirs. 
Solid vertical line indicates that the electron flow 
from B (a base) to A (an acid) is forbidden while the 
dotted one indicates that the charge flow between a 
given subsystem and its reservoir is allowed. In 
other words, the electron densities of reactants are 
relaxed; there are no other additional constraints on 
charge reorganization except that on charge transfer 
between reactants. One can eventually consider other 
hypothetical (non-equilibrium) situations: M = (RA M 
A|B), M = (A|B M RB), and M = (A|B). If the reactant 
is not opened to its electron reservoir, it means that 
its electron density is frozen. Thus, the first parti-
tioning describes the relaxed A and frozen B, second 
the opposite situation, while in third one the electron 
densities of both reactants are frozen. Such hypo-
thetical partitionings are very common in computa-
tional chemistry, e.g. energy partitioning schemes,24-27 
the buffer (localized) zone between quantum and classi-
cal systems;32 successive freezing of subsystems 
electron densities in the elongation method,30,31 
fragment-type calculations in other linear scaling 
methods28,29 etc. 

 As in part 2, we first concentrate on the equaliza-
tion equations involving the reactant chemical po-
tentials:12 
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and hardnesses:12 

  ,)(
BAAAA NN∂∂≡ µη

A
)( BBBB NN∂∂≡ µη , 

  
BAB B A( ) ,NNη µ≡ ∂ ∂  (13) 

 
 

,])([)(
BAAAA Nrr δρδµη ≡

ABB B B( ) [ ( )] ,Nη δµ δρ≡r r  

 
 

.])([)(
BABAB Nrr δρδµη ≡  (14) 

 
Here, NA/NB are the reactant electron populations. 
The mixed hardness derivatives ηA,B and ηB,A or 
ηA,B(r) and ηB,A(r) are equal due to the Maxwell re-
lation. The functional derivatives in (12) and (14) 
are evaluated for equilibrium reactant densities. Fi-
nally, we give the general proof, again using the 
mathematical induction. 
 Let us first consider chemical potential equaliza-
tion equations. Using the chain rule transformation 
∑X(∂/∂NX)(δNX/δρA(r)), where X = A and B, one can 
easy verify that 
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The last term disappears since electron perturbation 
in A does not change the number of electrons in B. 
In the same way, the chemical potential equalization 
for reactant B can be shown. The proof for hard-
nesses is almost identical, therefore we present here 
the equalization for the off-diagonal coupling hard-
ness: 
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Knowledge of the reactant chemical potential and 
hardnesses allows one to compute the charge-transfer 
(CT) contribution to the overall interaction energy in 
the quadratic approximation: 
 

CT
2
CTABBBAA

2
BACT 2/)2(2/)( ηµηηηµµ −≡−+−−=E . 

 (17) 
 
The chemical potential difference (CT chemical poten-
tial) is a driving force restoring the global equilib-
rium in the system while the CT hardness reflects 
the resistance of the charge distribution. We would 
like to mention here that it is the only contribution 
to the interaction energy that depends regularly on 
the donor/acceptor properties of the interacting spe-
cies.27 
 Let us now introduce the general n-potentials: 
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Here, α is a sequence of n – 1 letters A or B. For exam-
ple, n equal to 1 corresponds to chemical potential, 2 
to hardness data. We have just shown that equaliza-
tion takes place for n equal to one. Let us assume 
that 
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Now, for convenience α is a sequence of n letters A 
and/or B. We will show that this equality is fulfilled 
for (n + 1)-potential: 
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Here, β = α –X; in other words β is (n – 1)-sequence 
of letters obtained from α by disregarding X = A or 
B. Notice that the quantities that differ only by per-
mutation of indices are equal due to the Maxwell re-
lation (e.g., )(4)

BAAA
(4)
ABAA

(4)
AABA

(4)
AAAB µµµµ === . 

4. Conclusions 

In this paper, we have demonstrated that the popula-
tion derivatives of the system energy in reactant 
resolution (mutually polarized interacting reactants) 
are equalized throughout the space up to the infinite 
order in the perturbation expansion. For example, 
the first- and second-order derivatives are the reac-
tant chemical potentials and the hardness data, re-
spectively. They are the most frequently explored 
quantities in the theory of chemical reactivity. They 
define the charge-transfer stabilization energy which 
is often a starting point for analyzing different reac-
tivity descriptors and matching rules. The higher 
population derivatives can be important in strongly 
coupled reactants when the quadratic expansion of 
the system energy is questionable. 
 The direct consequence of the equalization equa-
tion is that the “canonically” coupled quantities or the 
“inverse” quantities to given population derivatives 
are additive. The number of electrons in molecular 
fragments and the reactant softness data are the best 
known examples. 
 The equalization equations can be used to test the 
distortion from the global equilibrium in linear scaling 
methods such as elongation, divide and conquer, and 
fragment molecular methods. In all these schemes 
the system global energy is computed by assuming a 
certain fragmentation technique. Therefore, one can 
established a well-defined hierarchy of corrections 
to the system energy resulting from the fact that 
charge distribution does not correspond to the global 
equilibrium.  
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